LINEAR INDUCTION MOTOR

BRADLEY

Electrical and Computer Engineering

Tyler Berchtold, Mason Biernat and Tim Zastawny

Project Advisor: Steven Gutschlag

10/1/2015

Outline of Presentation

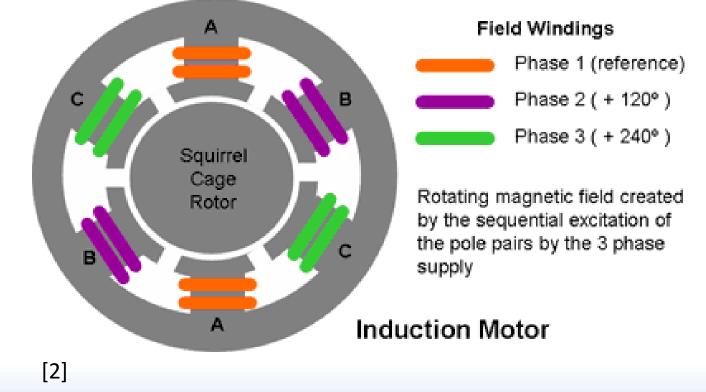
- Background Information
- Design Approach
- Economic Analysis
- Societal and Environmental Impacts
- Timeline
- Division of Labor
- Conclusion

Outline of Presentation

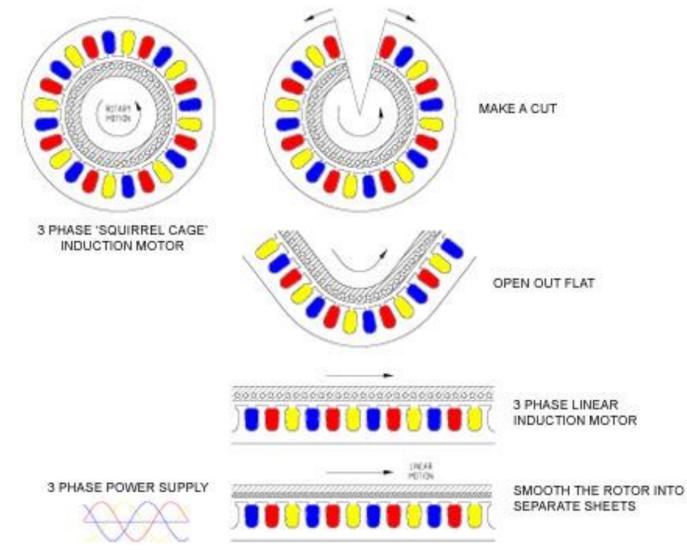
Background Information

- Design Approach
- Economic Analysis
- Societal and Environmental Impacts
- Timeline
- Division of Labor
- Conclusion

Background Information


Linear Induction Motor Background

- Alternating Current electric motor
- Powered by a multiple phase voltage scheme
- Force and motion are produced by a linearly moving magnetic field
- Used to turn large diameter wheels



Alternating Current Induction Machines

- Most common AC machine in industry
- Produces magnetic fields in an infinite loop of rotary motion
- Stator wrapped around rotor

Rotary to Linear

[3]

Design Constraints

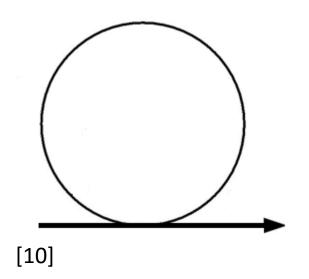
- 3 Phase Voltage Scheme
- Simulated linear track cannot exceed 1,100 rotations per minute (RPM)

Patent/ Product/ Literature Review

- Datasheets
 - Atmega 128 Documentation
 - Lenze Tech MH250B Documentation
- Journal
 - Design of a Single Sided Linear Induction Motor(SLIM) Using a User Interactive Computer Program [32]
- Books
 - Linear Induction Motor [33]
- Patents
 - Linear Induction Motor Construction [34]
 - Secondary member for single-sided linear induction motor [35]
 - Linear Induction Motor [36]

Outline of Presentation

Background Information

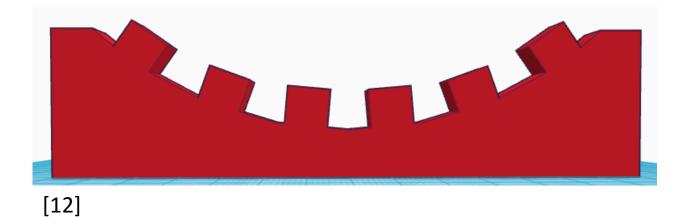

Design Approach

- Economic Analysis
- Societal and Environmental Impacts
- Timeline
- Division of Labor
- Conclusion

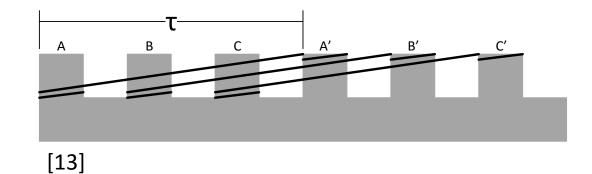
Design Approach

Problem

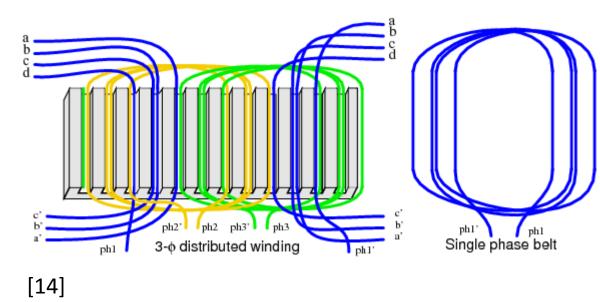
- Rotate the simulated linear track
- Rotate under safe speeds (<1100 RPM)



[11]


Solution to Problem

- Develop
- Design
- Implement a Linear Induction Motor to produce linear motion



Additional Research

- Pole Pitch
 - Design phase
- Pole Arrangements
 - Salient vs. non-salient
 - Design phase
- Interfacing sensors
 - Implementation phase

14

Key Components

- Stator Lamination Segments
- VFD
 - Lenze-tech MH250B
- Microcontroller
 - Atmega 128

[15]

Key Components Availability

Stator

- Design and have manufactured
- VFD
 - Provided by Caterpillar
- Microcontroller
 - Provided by Bradley

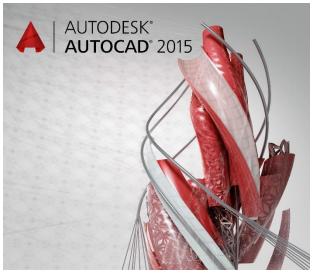

[17]

Alternative Solutions

- Lower velocity output
- Different material
- Change the number of poles
- Vary the dimensions of motor
- Lower frequency range

Alternative Components

- Solid manufactured stator
- Transformer E laminations
- Different Microcontroller


[19]

Skill Set Required

- Experience Interfacing components in C++
- MATLAB
- Understand of high level mathematics
- Power electronics
- Manufacturing skills

Multidisciplinary

- Main focus on Electrical Engineering
- Stator design may take some Mechanical Engineering background
 - May require additional help in 3-D modeling

[20]

Work Locations

- Bradley University
 - Power Lab
 - Senior Lab

Experimentation

- Location Power Lab
- Supervisor Professor Gutschlag

Solution Testing

- Current measurements
- Efficiency calculations
- RPM measurements
- Torque measurements
- Comparison to simulated/calculated results

Criteria for Solution Testing

- Rotation of the simulated linear track
- Output max speed within 50% of calculated max speed

Outline of Presentation

- Background Information
- Design Approach
- Economic Analysis
- Societal and Environmental Impacts
- Timeline
- Division of Labor
- Conclusion

Economic Analysis

Project Feasibility

- Highly feasible
- Work is divided equally
- Staying focused on objective goals

Consumer Market

- Lab Setting Only
- No Market
- Will not be sold

Overview of Total Component cost

Components	School Provided or Purchase	Cost (If Applicable)
Stator	Purchase	\$800.00
Variable Frequency Drive	School	\$848.00
Sensors	Purchase	\$20.00
Tachometer EE-SG3	School	\$2.00
Microcontroller/ LCD Screen	School	\$80.00
Miscellaneous	Purchase	\$100.00
	Total Cost:	\$1850.00

Cost Expenditures

Components	Cost
Stator	\$800.00
Sensors	\$20.00
Miscellaneous	\$100.00

Cost Constraints

- Major:
 - Stator
 - VFD
- Minor
 - Coil Windings
 - Tachometer photo-interrupter

Maintenance Cost

- Power consumption usage
- Dedicated Atmega128 Board for usage on only that device
- New coil windings

Outline of Presentation

- Background Information
- Design Approach
- Economic Analysis
- Societal and Environmental Impacts
- Timeline
- Division of Labor
- Conclusion

Societal and Environmental Impacts

Affected Individuals

- The project group
 - Tyler Berchtold, Mason Biernat and Tim Zastawny
- Project Advisor
 - Professor Gutschlag
- Course Instructor
 - Doctor Sanchez
- Fellow students in ECE 498

Natural Resource

- Metal
 - Steel Laminates
 - Copper
- Reusing equipment instead of purchasing new equipment
 - VFD
 - Variac
 - Tachometer
 - ATmega128

Ethical Development

- Does not violate Human Rights
- Not a weapon of mass destruction
- Ethically Made
- Ethical Use

Ensuring Safety

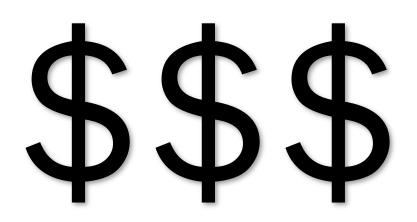
- Respecting Power Lab rules
 - Always wear safety glasses
 - Work in pairs
 - Turn off power when not using
- Checking power connections to the motors
- Observing Motor for possible issues
- Monitoring sensors
- Construction and implementation is done correctly

Safety Concerns

- Putting unsafe current levels through the stator.
- Heat Levels on Stator
- RPM of Simulated Linear Track
- Unauthorized individual attempting to use
 - Children, Adults, Disabled

Outcomes of Ignoring Safety

- Stator meltdown
- Stator exploding
- Electrocution
- Fire
- Microcontroller and sensor destruction
- Simulated Linear Track vibrations
- Personal Injury



Additional Safety Protocol

- Used under proper supervision and settings
- More monitoring equipment
- Integrated heat sensor with sound alert when temperatures are to high
- Shielding around stator to prevent accidently contact
- Adequate airflow to allow for proper cooling

Liability Concerns

- Damage to lab space
- Injury to others

Outline of Presentation

- Background Information
- Design Approach
- Economic Analysis
- Societal and Environmental Impacts
- Timeline
- Division of Labor
- Conclusion

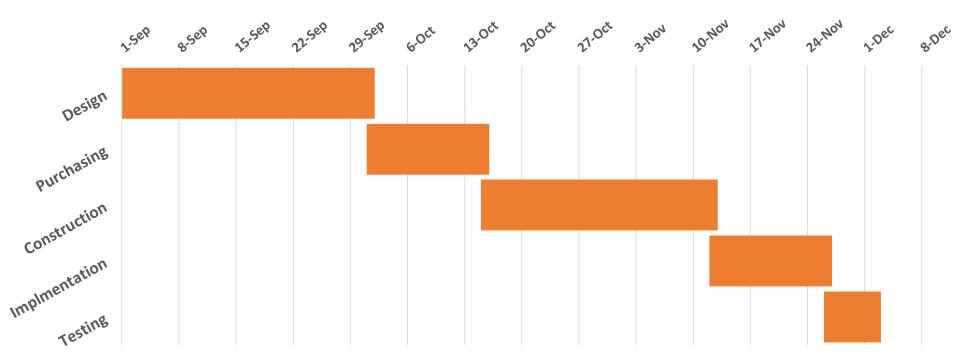
Timeline / Division of Labor

High Level - Division of Labor

- Design
 - Microcontroller
 - Tyler
 - Stator
 - Mason and Tim
- Purchasing
 - Entire Group

High Level - Division of Labor

- Construction
 - Sensors
 - Tyler
 - Motor
 - Mason and Tim
- Implementation
 - Tyler, Mason and Tim
- Testing
 - Tyler. Mason and Tim


Interfacing Work – Tyler B.

- Interfacing
 - Input from Sensors
 - Tachometer
 - VFD Frequency
 - Voltage
 - LCD Screen
 - Voltage
 - Slip
 - Speed

Stator Work – Mason B. and Tim Z.

- Stator
 - Dimensions
 - Pole Pitch
 - Length
 - Width
 - Height
 - Mounting hardware
 - Coil Windings
 - Gauge
 - # of wraps

Gantt Chart – Main Components

Outline of Presentation

- Background Information
- Societal and Environmental Impacts
- Design Approach
- Economic Analysis
- Timeline
- Division of Labor
- Conclusion

Conclusion

Conclusion

- Overall Goals:
 - Complete Design and Implementation if a linear machine
 - Prototype a linear stator
 - Develop working subsystems for control
 - Achieve linear motion
 - Gain experience
 - Power systems
 - Design and construction
 - Interfacing
 - Group dynamics
 - Useful engineering skills

Questions?

References #1-5

[1] A. Needham. A maglev train coming out of the Pudong International Airport. [Photograph]. Retrieved from https://en.wikipedia.org/wiki/Maglev#/media/File:A_maglev_train_ coming_out,_Pudong_International_Airport,_Shanghai.jpg

[2] *Linear Induction Motor.* [Photograph]. Retrieved from http://www.mpoweruk.com/motorsac.htm

[3] Force Engineering. *How Linear Induction Motors Work.* [Photograph]. Retrieved from http://www.force.co.uk/linearmotors/how-linear.php

[4] T. Zastawny. Simulated Linear Track Shot 1. [Photograph].

[5] T. Zastawny. Simulated Linear Track Shot 2. [Photograph].

References #6-10

[6] Laser Laminations. *Stator Core.* [Photograph]. Retrieved from http://laserlaminations.com/stator-laminations-product-samples.html

[7] Amazon. *Applications Peace No Bombs Patch.* [Photograph]. Retrieved from http://www.amazon.com/No-Bombs-Peace-Signs-Embroidered/dp/B00KGKC0DA

[8] Safety Signs. *Electrical Hazard Sign*. [Photograph]. Retrieved from http://www.safetysign.com/products/p521/danger-electrical-hazard-sign

[9] Clip Art Best. *Explosive Symbol Vector*. [Image]. Retrieved from http://www.clipartbest.com/clipart-xTgo4e88c

[10] T. Zastawny. Wheel Turning. [Figure].

References #11-15

[11] Old Lab Simulated Linear Track Shot. [Photograph].

[12] T. Zastawny. 3-D Prototype Model of Stator. [Figure].

[13] T. Zastawny. *Polepitch*. [Figure].

[14] All About Circuits. *Phase Belt*. [Image]. Retrieved from http://www.allaboutcircuits.com/textbook/alternating-current/chpt-13/tesla-polyphase-induction-motors/

[15] Newegg. ATmega128 ATMEL AVR Development Board ATmega128A-AU Core. [Image]. Retrieved from http://www.newegg.com/Product/Product.aspx?Item=9SIA5FB2053 831&cm_re=ATmega128_ATMEL_AVR_Development_Board_ATmeg a128A-AU_Core-_-9SIA5FB2053831-_-Product

References #16-19

[16] Polaris Laser Laminations. Segment Laminations. [Photograph]. Retrieved from

http://www.polarislaserlaminations.com/images/slide-45.jpg

[17] Electric Wholesale Motor. Lenze Tech MCH250B. [Photograph]. Retrieved from http://www.electricmotorwholesale.com/LENZE-ESV152N02YXC.html

[18]

[19] Solid Stator. [Photograph]. Retrieved from http://4.bp.blogspot.com/-XWGCOFz7xB8/UCOGQdLxeFI/AAAAAAABXk/haRdh1NHZ2I/s1600 /solid_slot_stator.jpg

References #20-25

[20] Modena. *AutoCAD Logo.* [Photograph]. Retrieved from http://www.modena.co.za/wp-content/uploads/2014/10/autocad-2015-badge-2048px.jpg

[21] Solidworks. *Logo*. [Photograph.] Retrieved from http://www.solidworks.com/

- [22] T. Zastawny. Senior Lab. [Photograph].
- [23] T. Zastawny. *Power Lab*. [Photograph].

[24] My Door Sign. *Maintenance in Progress*. [Photograph]. Retrieved from http://www.mydoorsign.com/maintenance-inprogress-caution-sign/sku-s-5712

[25] T. Zastawny. Main Component Gantt Chart. [Figure].

References #26-31

[26] T. Zastawny. Detailed Gantt Chart. [Figure].

[27] M. Beirnat. *Ideal Linear Synchronous Speed Vs. Frequency*. [Figure].

[28] T. Zastawny. System Block Diagram. [Figure].

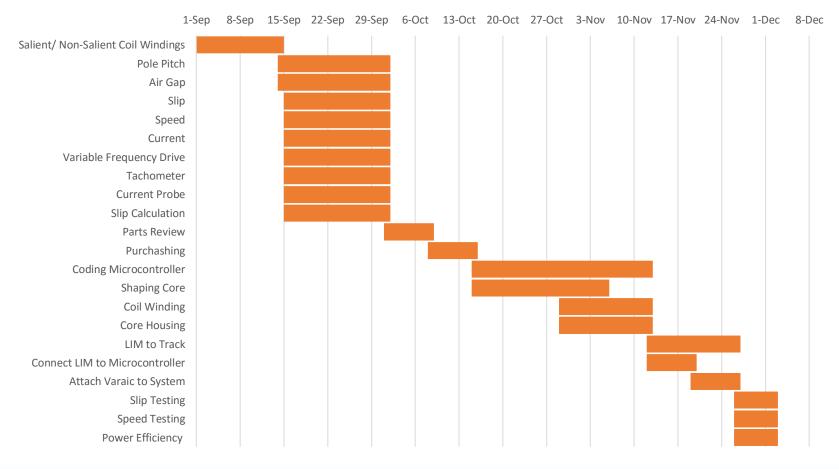
[29] T. Zastawny. System Block Diagram with highlighted portion. [Figure].

[30] T. Zastawny. Close up of VFD Block Diagram. [Figure].

[31] T. Zastawny. Flowchart of Internal Interrupt. [Figure].

References #32-36

[32] S. P. Bhamidi. "Design of a Single Sided Linear Induction Motor (SLIM) Using a User Interactive Computer Program." Internet: https://mospace.umsystem.edu/xmlui/bitstream/handle/10355/4 308/research.pdf?sequence=3, 2005. [Sept. 24, 2015]


[33] C. I. Hubert, "Linear Induction Motor," in *Electrical Machines Theory, Operation, Applications, Adjustment, and Control*. New York, Merril, 1991, ch. 7, sec. 8, pp. 263-265.

[34] G. A. Francis. "Linear induction motor construction." U.S. Patent 3155851 A, Nov. 3, 1964.

[35] T. Fellows, E. Laithwaite. "Secondary member for single-sided linear induction motor." U.S. Patent 3824414 A, Mar. 13, 1973.

[36] N. B. John. "Linear induction motor." U.S. Patent 3628072 A, Jun. 17, 1970.

Detailed Gantt Chart

Detailed Budget – Buying

Component	Cost
Stator Laminates	\$800.00
Copper Wire	\$10.00
Metal Bracing	\$50.00
Fasteners	\$10.00
Speed Sensor	\$5.00
Tachometer	\$2.00
Miscellaneous Small Components	\$100.00
Total Cost:	\$967.00

Equipment Already Have

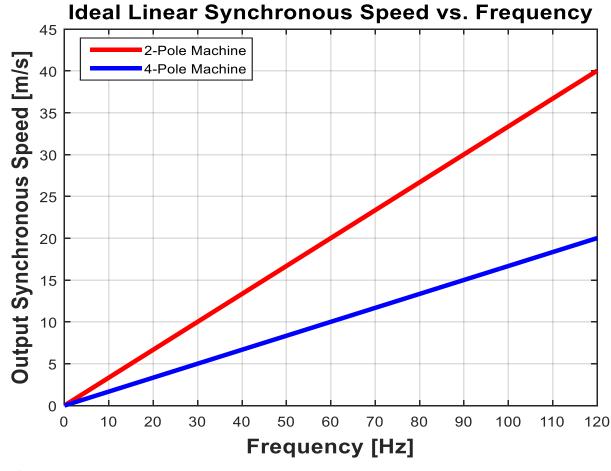
Component

Simulated Linear Track

Variable Frequency Drive (Lenze AC Tech MH250B)

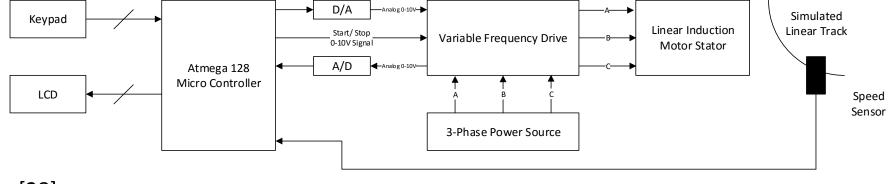
Variac

High Voltage Current Meter


Microcontroller (Atmega128)

Tachometer (EE-SG3)

Formal Test procedures


- Measuring input and output current
- Measuring torque
- Measuring speed
- Calculating efficiencies

Preliminary Test Results

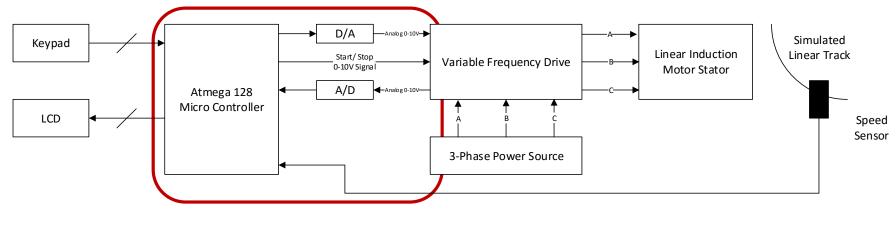

[27]

Diagram of Entire System

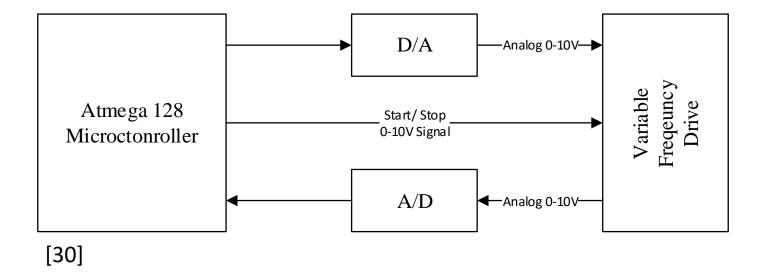
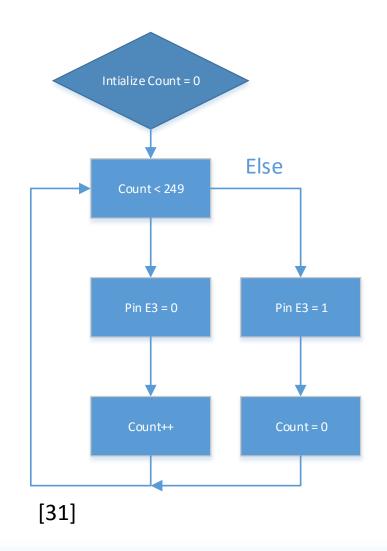

[28]

Diagram of Entire System



[29]

Close up of VFD System

Flowchart of Internal Interrupt

